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BACKGROUND 
 
Hong Kong is one of the most densely populated cities in the world. To meet the citizens' 
travel needs, the railway operates with long daily service hours, resulting in a short 
maintenance window. To further enhance the safety and reliability of railway, it is 
important to implement effective approaches to analyze railway incidents, explore 
correlations of incidents, and recommend alerts of high-risk equipment and areas in 
railway systems to achieve novel predictive maintenance on railway track systems.  
 
Recent years have witnessed a sharp penetration of data-driven methods into various 
industry sectors, such as manufacturing, finance, transportation, cybersecurity, and 
healthcare. Therefore, in this study, we aim to exploit a wide range of railway data, such 
as the railway incident reports, maintenance records, real-time condition data and online 
information, which are valuable for gaining insights into associated factors with different 
degrees of connection in leading to railway track incidents, by building an Artificial 
Intelligence (AI) model. 
 
In terms of the AI model building, it is crucial to turn the raw data into structured 
knowledge so that AI technologies can be used to efficiently process the data and make 
predictions using the data. Many information extraction techniques are used to transform 
raw data into structured data. For example, Regular Expressions (Regex) are often used 
to extract specific keywords; interpolation methods can be applied to handle missing 
values in the raw data; Interquartile Range (IQR) is designed for removing outliers in the 
raw data that may mislead downstream data analytics tasks; complex unsupervised 
learning methods such as Principal Component Analysis (PCA) (Pearson, 1901) and K-
means (Lloyd, 1982; MacQueen, 1967) are used to extract informative features. 
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After information extraction from raw data, how to store and retrieve massive amounts 
of data efficiently is a critical issue. Data modelled in the forms of tabular relations is 
stored in relational databases like MySQL, Oracle, etc., or in NoSQL databases like 
MongoDB, Cassandra, etc., if data is modelled in non-relational forms. On the other hand, 
graph databases, such as Neo4j, have recently become popular since the graph structure 
carries more semantics and enables more powerful analytics using AI techniques than 
traditional tabular structures (Chaudhri et al., 2022). Graph databases represent structured 
knowledge extracted from raw data where nodes represent objects and edges indicate the 
relationships between objects. By storing the extracted information in a graph database, 
we can run efficient queries to generate AI model outputs which give extra information 
on potential insights about area of focus or prescriptive maintenance actions.  
 
In this study, historical data from MTR Corporation (MTR) was used.  It was a good start 
while it was noted that prediction accuracy would need to be further optimized as there 
are rare past track incident data due to the effective maintenance regime of MTR over the 
years.   The implication that we derived from the current dataset probably requires more 
incident data to calibrate the significance and relative weightings in the prediction.   More 
incident data may be obtained, e.g. further historical data, to the AI model for learning.  
 
In the long run, once we have an effective representation of the railway data, we can easily 
apply AI techniques on the data for important downstream applications. For example, to 
facilitate efficient and effective summarization on all the railway incidents, we can build 
a question & answering (Q&A) system within the AI model that uses natural language to 
issue queries over the database. By exploiting Natural Language Processing (NLP) 
techniques such as Word2Vec (Mikolov, Sutskever, et al., 2013), TextCNN (Zhang & 
Wallace, 2015), and Fasttext (Joulin et al., 2016), the semantic properties of textual data 
can be captured and then used in the Q&A process within the AI model. NLP models pre-
trained on large corpus of textual data such as Transformer (Vaswani et al., 2017), ELMO 
(Peters et al., 1802), GPT (Radford et al., 2018), BERT (Devlin et al., 2018) and XLNET 
(Yang et al., 2019) can further boost the accuracy of the Q&A system. In addition, with 
the effective representation of the railway data, we can also apply deep neural networks 
to construct a classification model for railway incident diagnosis.    
 
 
OBJECTIVE 
 
The objectives of this project are to build a semantic AI model of railway incident data 
which enables powerful data-driven analytics for discovering knowledge of railway track 
incidents, interactive Q&A queries, and predictive models of track incidents. We have 
the following specific objectives: - 
 
1. Build a semantic AI model with “Railway Schema”, “Semantic Model” and “Railway 

AI Predictive Maintenance Model” that aims to identify risks and predict potential 
incident occurrences in the railway track system. 

 
2. Integrate a wide range of data sources, including Incident Reports, Track Incident 

Reports (TIR), Track Geometry Data, Welding Records (WR), Real-time Vibration 
Data, Abnormal Signal (AS) Records, and Defect Records (DR) of Permanent way 
(Pway) system, and weather information & news in the public domain, into the 
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information system. We will turn the diverse data sources into structured knowledge 
about railway incidents and store the structured knowledge in a clustered database. 
 

3. Build an analytics engine based on the clustered database. By using the analytics 
engine, we will develop semantic models to identify correlations and contributing 
factors of railway track incidents based on the Pway data of the operating railway.  It 
would give further insights on area of focus or prescriptive maintenance actions in 
daily maintenance. 

 
 
METHODS  
 
In this section, we summarize the methodology used in each main component of the 
system. 

 
Figure 1: System Architecture 

 
3.1 Component 1: Input Data (Ingestion Module) 
Data is ingested into the system from different data sources, including static data (asset 
data, incident reports and maintenance records), dynamic data (real-time conditions) and 
online data (weather and news), and listed in Figure 1. The data is inserted into the data 
lake of the schema designed. 
 
3.2 Component 2: Clustered Database  
The Clustered Database is formed by integrating the high-speed indexing engine DB for 
free text, Columnized DB for real-time data and Graph-based DB for incident correlations 
for Pway data and key-value identified. 
 
High-Speed Indexing Engine - Elastic-Search: Application Data can be searched at high-
speed using textual indexing search. Based on this, we can efficiently retrieve and analyze 
the relationship between incidents and various data sources. 
 



 

 

 
    4 

Columnar-based Database – Cassandra: Real-time sensor data is stored in Cassandra 
with elastic-search to speed up the retrieval process. 
 
Graph-based Database - Neo-4J: We store relationships of entities and incidents in a 
graph-based database. This kind of data is transformed into graph-based structures to 
emulate the fundamental relationship of the incident and equipment for better queries by 
AI for analysis. 
 
3.3 Component 3: AI and Analytics Engine 
The system can feed data in the AI and analytics engine to process different data sets, 
data transformation and calculate the likelihood of permanent way incidence occurrence. 
 
3.3.1 Semantic AI Model - Q&A Module 

 
Figure 2: Semantic AI Model 

 
The semantic AI model consists of two components as follows: - 
  
Ensemble of Pre-Trained Models 
Different pre-trained models have strengths in different document structures and sentence 
patterns. In Phase 1, we mix several models together to obtain a more powerful ensembled 
model. The final model is an all-model-ensemble that involves Albert-Ensemble Model 
and several BERT-variant models. In Phase 1, we fine-tune the model with incident data. 
In Phase 2, we further fine-tune the model with operating railway data on concession 
application data.  
 
Q&A Tagging Retrieval 
This part is cast as a supervised learning task. The methodology is similar to Masked 
Language Model (MLM) and Next Sentence Prediction (NSP) (Devlin et al., 2018), 
which is summarized below. 
 
Step 1: Determine the Existence of the Answer in the Sentence 
Similar to Phase 1, we utilize AI QA to query the data. The data may exist or may not 
exist. We use SQuAD 2.0-variant model to determine if an answer exists. If the answer 
does not exist in the data, the models spot the non-existence of the answer. In our previous 
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study, out of 100 paragraphs and 10 questions, 60% of answers do not exist. Therefore, 
detection of the existence of an answer enhances the resultant accuracy significantly.  
 
Step 2a: Retrieving “Tag” by using AI QA Model 
After deciding the existence by the above model, we switch to an all-model-ensemble 
(Last Model in Phase 1) model with higher accuracy to find the answer to the question. 
To retrieve the keyword “Tag” in the best general sense, our tuned model can retrieve 
some general sense information, such as “What is the last inspection date?” Since dates 
are general terminology that can be understood by T5 model (Raffel et al., 2020), the T5 
model is likely to return the result even with the pre-trained model only. 
 
Step 2b: Model Better in Specific Data – Special Training on Release of Concession 
(RoC) Data 
If the answer involves specific data keywords from data, special data model with training 
dataset is required. We employ the XLM Roberta model (Liu et al., 2019) to return the 
answer with keywords. For example, given a question, “What is the cause of the incident?” 
keywords such as “Broken Rail” are quite specific to data. Blending the tagged keywords 
from documents can calculate the relevance of the keywords. The model can return a list 
of answers in descending order of relevance. 
 
Step 3 Answers from both models are mixed and output as a final result 
Answers are feedback to find a better fit in different situations of text.  
 
3.3.2 AI Model for Predictive Maintenance in a Pway System 

 
Figure 3: Model Structure 
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Step 1: Use of Proprietary ALBERT-Ensemble Model 
Proprietary ALBERT-Ensemble Invariant Model, the State-of-the-Art NLP AI model 
created in Phase 1, retrieves different attributes from different incidents in the report with 
key-value pairs. The key-value pairs contain essential information from the incident. 
 

 
Figure 4: retrieve incident data from data source with NLP model 

 
Our proprietary model uses the encoder-decoder architecture and is trained with 
Railway Incident Data. 

 
Figure 5: Pre-Trained Model 

 
We have successfully retrieved different railway-specific attributes using named entities 
recognition. Our natural language processing modules can successfully retrieve textual 
information from textual descriptions in PDF and Excel files. Observation sets of the 
railway incidents are constructed with attributes extracted from Pway data and are stored 
in a high-speed big data elastic-search data lake. Our proposed algorithms are SQuAD2.0 
compliant with state-of-the-art benchmarking with Railway data adaptation to achieve the 
best textual AI performance. 
 
Step 2: Use of Embedding 
We utilize EMBEDDING Layer techniques to compress incident attributes into 
condensed N-Dimensional Tensor matrices for subsequent layer input. 
 

 
Figure 6: Illustration of using embedding layer 

 
The embedding techniques translate all textual semantic meanings into matrices (i.e. 
mathematical representations), and orthogonal feature selection techniques compress 
these mathematical representations. In layman's terms, semantic meanings are digitized 
to ease the vector calculations of AI classifiers. 
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Step 3: Use of Similarity-Embedding  
This step correlates different incidents by different selected key-value pairs and attributes. 
Apply the machine learning in learning the similarity of incidents using previous 
embedding data. 
 

 
Figure 7: similarity calculation 

 
The embedding matrices from step 2 shall be used to calculate the similarity matrices. 
The operation simulates N-dimensional dot-products of features. This step optimizes the 
similarity measures after the shuffling of all combinations of inputted feature dimensions. 
Special techniques such as Minkowski filtering may be enforced for regularization to 
prevent the overfitting of sparse data from incident reports. 
 
Step 4: Use of Hybrid Decision Tree  
We use both hybrid-tree-based decision-tree clustering and residual connection in this 
step. The tree-based decision tree clustering provides a clustering by using information-
gain-index. It compensates for the problem of lack of data. 
 

 
Figure 8: Illustration of using hybrid decision tree 

 
Use of Residual Connections: Similar to the famous RESNET, we use residual 
connections to preserve the identity data and blend it with hybrid clustering tree output. 
Resemblance of Explainable AI (X-AI): The X-AI techniques explain the attributions of 
contributing factors. It is similar to the random forest concept. The perturbation of 
parameters in attributing factors in feature trees prevents optimizing the best hyper-
parameters while maintaining human-readability advantages. 
 
Step 5: Utilizing Convolutional Neural Network Layers for Feature Extraction 
AI network retrieves important combinations of behavioral patterns among primitive 
features. The pooling layer aggregates the results from high dimensions to lower 
dimensions. In layman's terms, it summarizes the pattern result by aggregation. 
 
Step 6: Feature Extraction with Patterns 
We extract features from several data sources for prediction. The data exhibits patterns 
with a combination of attribute occurrences. For example, Track Incident Records (TIR) 
correlate with welding and Abnormal Signal (AS) records deeply. The data records, such 
as the chainage with frequent welding records, indicate a higher likelihood of an incident. 
The in-depth features, like the attribute of vibration sensor data, could be extracted in a 
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time-series pattern. The convolution layers extract relationships from these features and 
the combined patterns to feed the final regression layer for decision-making. 
 
Step 7: Long Short-Term Memory (LSTM) Layers 
These layers retrieve the feature of incidence across time. For example, the trends in 
vibration sensor and ultrasonic sensor values may be a critical factor in predicting the 
probability of an incident. It retrieves the feature and characteristics in time series data. It 
will be fed to the final regression layer to mix the final decision. 
 
Step 8: Final Decision-Making Layers 
We utilize fully connected layers to act as N-dimensional universal function 
approximators. They output a single continuous value as the likelihood of incident 
occurrence at a particular chainage through all the convolution output features criteria 
and weightings.  
 
3.4 Component 4: Application Server (Web Portal) 
Application server with web portal is built to display the AI model outcomes on 
dashboards and knowledge graph.  
 
 
RESULTS 
 
4.1 Ranking and Contributing Factors of Railway Track Systems 
In the early phase of the long-term analysis journey, it is expected that it is not known 
which and what pieces of data are essential in deriving the results. Therefore, the subset 
of data is selected in this analysis to balance the data collection efforts of the operation 
team. Hence, the goal here is to figure out more potential insights. Those insights shall 
assist in better selecting and collecting data for future analysis and model building. This 
subsection has outlined a list of factors that may have contributed to the incidents.  
 
Correlations, ranking and contributing factors of railway track incidents were identified 
and showed in the result of semantic models. 119 contributing factors are identified by 
the semantic AI models based on operating railway training data from Jan 2016 to Dec 
2021, and these factors are of varying probability to contribute to TIR incidents. Table 1a 
shows the contributing factors identified by semantic models and probability of 
contribution to TIR incidents. Track geometry, small track curve radius, abnormal 
ultrasonic reading in WR record and switch crossing are most significant contributing 
factors. 
 
Table 1b shows vibration sensors related contributing factors as identified by the semantic 
AI models and probability of contribution to TIR incidents. Those vibration sensors such 
as “Spring Deflection”, “Track CrossLevel” and “Lateral Body Acceleration” are 
examples of factors that are not easily noticeable but have higher probability of 
contribution to TIR incidents. They give valuable insights to maintainer on their 
predictive maintenance planning. 
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Table 1a: Contributing factors identified by semantic models and probability of contribution to TIR 

incidents (only contributing factors with probability >25% are shown) 
 

 
Table 1b: Contributing factors (vibration sensors) identified by semantic models and probability of 

contribution to TIR incidents  
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Case Study: We analyze the contributing factors (CFs) for incidents through a knowledge 
graph based on the operating railway training data from Jan 2016 to Dec 2021 and give 
an example of how to find out the CFs to the incident PWS-818-20. Figure 9 displays a 
knowledge graph illustrating relationships between factors and the incident. The strength 
of the edges in the graph indicates how strong the connection between contributing factors 
and TIR. Figure 10 shows the contributing factors summary and ranking for all TIR 
incidents.  Many panels list the abnormal records related to the incident, and the Chainage 
Probability panel also provides the incident probability along chainage.  
 
Figure 11 shows the vibration sensor record graph that can display a particular type of 
vibration sensor along the chainage of a particular date. Various thresholds are 
incorporated on the graph to identify vibration sensor value spikes. 
 

 
Figure 9: Example of identifying contributing factors for an incident (PWS-818-20) through the 

knowledge graph 
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Figure 10:  Contributing factors summary and ranking for all TIR incidents 

 

 
Figure 11:  Vibration sensor record graph 
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4.2 Incident Probability Prediction 

 
Figure 12: Overview of the Railway AI Predictive Maintenance Model  

 
In order to make a long-term development, we establish a railway framework. The 
framework actually demonstrates the use of different categories of Pway data sources 
ranging in location-related data, AS-related data, WR-related data, track geometry-related 
data, environment changes data, vibration sensor data and rail demographics to find out 
the correlation with TIR for predicting railway track incidents along each track section (1 
km chainage). Figure 12 shows the overview of our Railway AI Predictive Maintenance 
Model.  
 
Table 2 shows the result of predictive incident probability along the chainage by the AI 
model trained on operating railway training data from Jan 2016 to Aug 2021. Besides the 
incident probability, the AI model also indicates on what basis the incident probabilities 
were calculated. 
 

Chainage Direction Reason Probability 
(%) 

1 Downtrack WR R70 Reading, SCHL 80 
2 Uptrack WR R70 Reading, SCHL 78 
3 Downtrack WR R38 Reading 85 
4 Uptrack WR R70 Reading, SCHL 56 
5 Uptrack Sharp-Curve-High Leg 83 
6 Uptrack SCHL, WR Reading R38 86 
7 Uptrack WR R70 Reading, SCHL 76 
8 Downtrack Sharp-Curve-High Leg 52 
9 Uptrack WR R70 Reading, SCHL 57 

10 Downtrack Sharp-Curve-High Leg 63 
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11 Uptrack WR R70 Reading, SCHL 62 
12 Uptrack WR R70 Reading, SCHL 61 
13 Downtrack WR R70 Reading, SCHL 61 

Table 2: Predicted Probability at Specific Locations 
 
4.2.1 Accuracy 
We test the AI model trained on TIR cases from Jan 2016 to Aug 2021 with the recent 
data of TIR cases from Sep 2021 to Apr 2022. Table 3 indicates the model can achieve 
an accuracy of at least 53% and a peak at 69% under different probability thresholds.   
 

Probability Threshold Correct 
Predictions Accuracy False Positives False Negatives 

0.1 62 53% 10% 36% 
0.2 70 60% 14% 26% 
0.3 76 66% 16% 19% 
0.4 79 68% 17% 15% 
0.5 78 67% 19% 14% 
0.6 80 69% 21% 10% 
0.7 80 69% 23% 8% 
0.8 75 65% 29% 6% 
0.9 76 66% 33% 2% 

Table 3: Results of testing the Railway AI Predictive Maintenance Model (TIR cases from Jan 2016 to 
Aug 2021) with current data (TIR cases from Sep 2021 to Apr 2022) 
 
The AI model is re-trained on TIR cases from Jan 2016 to Dec 2021 and tested with the 
most recent data of TIR cases from Jan 2022 to Jun 2022. Table 4 indicates the model can 
achieve an accuracy of 72% under probability thresholds of 0.4 to 0.7. 
 

Probability Threshold Correct 
Predictions Accuracy False Positives False Negatives 

0.1 69 59% 36% 4% 
0.2 73 63% 27% 10% 
0.3 77 66% 20% 14% 
0.4 83 72% 15% 14% 
0.5 83 72% 9% 19% 
0.6 83 72% 6% 22% 
0.7 83 72% 4% 24% 
0.8 85 73% 3% 24% 
0.9 87 75% 0% 25% 

Table 4: Results of testing the Railway AI Predictive Maintenance Model (TIR cases from Jan 2016 to 
Dec 2021) with current data of TIR cases from Jan 2022 to Jun 2022 
 
In order to test the incident prediction ability of the AI model on other railway line, we 
applied another operating railway dataset (from Apr 2021 to Dec 2021) and tested the AI 
model with another recent set of data of TIR cases from Jan 2022 to Apr 2022. Table 5 
indicates the AI model can achieve an accuracy of at least 52% and a peak at 82% under 
different probability thresholds.  
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Probability Threshold Correct 
Predictions Accuracy False Positives False Negatives 

0.1 39 63% 32% 5% 
0.2 39 63% 32% 5% 
0.3 51 82% 13% 5% 
0.4 51 82% 13% 5% 
0.5 45 73% 8% 19% 
0.6 35 72% 3% 40% 
0.7 34 56% 0% 45% 
0.8 33 55% 0% 47% 
0.9 32 52% 0% 48% 

Table 5: Results of testing the Railway AI Predictive Maintenance Model on other set of operating 
railway data (TIR cases from Apr 2021 to Dec 2021) with current data of TIR cases from Jan 2022 to Apr 
2022 
 
One of our biggest challenges of this AI project is that the number of incidents is small 
due to the effective maintenance regime of MTR over the years. The implication that we 
derived from the current dataset would require more incident data to calibrate the 
significance and relative weightings in the prediction. Despite of this challenge, it is very 
encouraging to start on the long-term analytic journey.  
 
4.2.2 Visualization 
The incident probability for the chainage as derived by the AI model is given and 
classified as “High”, “Medium”, and “Low”. “Red” (High), “Yellow” (Medium), and 
“Green” (Low) probabilities are shown on the dashboard. With the help of the AI model, 
we could quickly identify the potentially higher-risk equipment and areas in railway 
systems and consider appropriate maintenance attention. 
 

 
Figure 13: Incident probability along chainage  
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CONCLUSION  
 
A pilot project has been successfully implemented for developing a semantic AI model 
with “Railway Schema”, “Semantic Model” and “Railway AI Predictive Maintenance 
Model” that aims to identify risks and predict potential incidents in the railway track 
system. 
 
In this study, we integrate various data sources of railway track incidents data into a 
clustered database. The data is stored as structured knowledge, enabling powerful and 
efficient analytical queries. Based on the clustered database, we develop a Q&A module 
within the AI model that allows analysts to efficiently and effectively discover knowledge 
about railway incidents from the data. To predict the likelihood of railway track incidents 
and identify equipment and areas at risk, we further propose an AI model incorporating 
the semantic features extracted from the raw data. Our case study of contributing factors, 
incident probability prediction and visualization of potential risk demonstrates the 
effectiveness of the system based on the available dataset in the study.  
 
By exploiting semantic AI technologies, we can integrate information from various data 
sources and apply computational tools to draw comprehensive insights of track incidents. 
A novel predictive maintenance approach using semantic AI technology was developed 
to determine the ranking and contributing factors (including those unnoticeable features) 
of railway track incidents in the coming 12 months to empower the maintainers with 
predictive early warnings, historical case matching, and actionable intelligence.  It will 
bring asset management, data storage, data searching and ultimately predictive 
maintenance analysis for railway track into a new era by use of a semantic AI model.  It 
has demonstrated an innovative way to enable predictive maintenance by AI, 
supplementing the traditional maintenance method in the railway industry.  
 
This project is a very encouraging starting point of the long-term analytic journey while 
it was noted that prediction accuracy would need to be further optimized as there are rare 
past incident data.   The implication that we derived from the current dataset probably 
requires more incident data to calibrate the significance and relative weightings in the 
prediction. More incident data may be obtained, e.g. further historical data, to the AI 
model for learning.  
 
Our future plan is to explore this application in other railway systems, such as the 
signalling, power and rolling stock, for devising predictive maintenance to contribute 
further enhancement of the overall safety and reliability of the railway system in Hong 
Kong and in the industry. 
 
 
Keywords: Semantic AI; Predictive Maintenance; Pway 
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