

# Technical Guidelines on Code of Practice for Energy Efficiency of Building Services Installation (TG-BEC)



#### Briefing Session for

**Registered Energy Assessors** 

機電工

# **Buildings Energy Efficiency Ordinance**

- Buildings Energy Efficiency Ordinance (BEEO) fully implemented on 21 Sep 2012 - combat climate change
- Require 4 key types of building services installations (BSI) to comply with Code of Practice for Energy Efficiency of Building Services Installation (BEC) issued by EMSD in Feb 2012
- Technical Guidelines on Code of Practice for Energy Efficiency of Building Services Installation (TG-BEC or TG) issued by EMSD on 3 Sep 2013 – explains BEEO & BEC contents
  - Good Practice to exceed min requirements in BEC









# **TG Contents**





EMSD 2

- > 10 sections
  - 1 Introduction
  - 2 Interpretations & Abbreviations
  - 3 Application
  - 4 Technical Compliance with BEEO

O Malifan

- 5 Lighting
- 6 Air-conditioning
- 7 Electrical
- 8 Lift & Escalator
- 9 Performance-based Approach
- 10 Major Retrofitting Works (MRW)

Overview & explanation of BEEO compliance process

Explanations of BEC's technical requirements with examples

# TG – Compliance Process Prescribed Buildings and Exemptions



#### BEEO & BEC governs (BEEO Sch 1)

#### **Prescribed buildings**

- Hotel & guesthouse
- Educational building
- Community building
- Municipal services
- Hospital & clinic
- Government building
- Airport passenger building
- Railway station

- Commercial building
- Industrial building common area
- Residential building common area
- Composite building
  - commercial portion
  - common area of portion for residential or industrial use

4

#### BEEO does not govern (BEEO sec 4 & Sch 2)

Small building (3-storey each  $\leq 65 \text{ m}^2$ )



- Building with approved electrical load ≤100A
- Historical or Monument building
- Building to be demolished in 12 months





# **珍惜资源** 李信節能

#### "NEWLY CONSTRUCTED" building -

Having obtained the consent to the commencement of building works for superstructure construction from Building Authority after BEEO comes into full operation i.e. after **21 Sep 2012** 

#### "EXISTING" building -

Having obtained the consent on or before 21 Sep 2012



#### **NEWLY CONSTRUCTED BUILDINGS**

- Building owner to engage a Registered Energy Assessor (REA) to certify BEC compliance
- Building owner to obtain a Certificate of Compliance Registration (COCR) from EMSD

Major retrofitting works in units or common areas in both NEWLY CONSTRUCTED & EXISTING buildings

- Building owner / Responsible person to engage a REA to certify BEC compliance
- Obtain Form of Compliance (FOC) from the REA

5



#### **Timeline for Newly Constructed Buildings**



![](_page_6_Picture_1.jpeg)

#### **CBSI & Non-CBSI**

| Building<br>type                         | Common area or unit served by concerned BSI                                                                           | Ownership of<br>BSI | CBSI or<br>non-CBSI | Justification based on BEEO interpretation                                          |  |  |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|-------------------------------------------------------------------------------------|--|--|
| Building<br>with<br>common<br>area (i.e. | uilding Entrance lobby, common corridor,<br>staircase etc. (i.e. the common<br>area interpreted in BEEO)<br>rea (i.e. |                     | CBSI                | BSI not solely serving a unit                                                       |  |  |
| with deed                                | Building owner occupied unit                                                                                          | Building owner      | Non-CBSI            | BSI solely serving a unit                                                           |  |  |
| covenant                                 | Occupier owned unit                                                                                                   | Building owner      |                     |                                                                                     |  |  |
| or DMC)                                  |                                                                                                                       | Unit occupier       |                     |                                                                                     |  |  |
|                                          | Leased unit                                                                                                           | Building owner      |                     |                                                                                     |  |  |
|                                          |                                                                                                                       | Unit lessee         |                     |                                                                                     |  |  |
| Building<br>without<br>common            | Entrance lobby, common corridor, common staircase etc.                                                                | Building owner      | CBSI                | BSI owned by the building<br>owner (and not solely serving a<br>unit)               |  |  |
| area<br>(without                         | Building owner occupied unit                                                                                          | Building owner      | CBSI                | BSI owned by the building                                                           |  |  |
| DMC)                                     | Leased unit                                                                                                           |                     |                     | owner                                                                               |  |  |
|                                          | Leased unit                                                                                                           | Unit lessee         | Non-CBSI            | BSI solely serving a unit and<br>owned by a person who is not<br>the building owner |  |  |
|                                          |                                                                                                                       | 7                   |                     | 🥂 機電工程署 🛃 EMSD                                                                      |  |  |

# TG – Compliance Process Major Retrofitting Works (MRW) (BEEO Sch 3)

![](_page_7_Picture_1.jpeg)

#### **CBSI Main Component**

### 500 m<sup>2</sup> Works Area Addition/replacement of BSI conducted at one or more places in a unit or a common area OR a total floor area covered by the works under the same series of works within 12 months ≥ 500 m<sup>2</sup>

Central Building Services Installation (CBSI) – e.g. serving common area, central chilled water plant (see later slide)

Addition/replacement of CBSI main component -

![](_page_7_Picture_6.jpeg)

a complete electrical circuit at rating ≥ 400A

or

![](_page_7_Picture_9.jpeg)

a chiller or a unitary airconditioner at rating ≥ 350kW capacity (cooling or heating) or

![](_page_7_Picture_11.jpeg)

motor drive + mechanical drive of a lift, escalator or passenger conveyor

![](_page_7_Picture_13.jpeg)

# TG – Compliance Process MRW (Cont'd)

![](_page_8_Picture_1.jpeg)

- Completion of MRW (e.g. cert of completion) when all involved BSIs are ready to be used for their principal function as designed (BEEO sec 17(3))
- Application threshold is the rating at works completion (BEEO sec 5) e.g. Replacement of CBSI 360kW chiller with one at 340kW - NOT MRW
- The common area (corridor, lift lobby, staircase etc.) of a building, the building's occupants' clubhouse and the building's car park – each has its 500 m<sup>2</sup> MRW threshold (BEEO Sch3 notes)

#### Works area –

- internal floor area measured to the internal faces of enclosing external and/or party walls
- may include areas NOT served by the concerned BSI e.g. duct route area, wiring route area etc.

![](_page_8_Figure_8.jpeg)

Good Practice – compliance with BEC for non-MRW in existing buildings

![](_page_9_Picture_1.jpeg)

#### **Building Blocks Concept (COCR preferable)**

![](_page_9_Figure_3.jpeg)

![](_page_10_Picture_1.jpeg)

### **Maintaining of Design Standard**

BEC performance standard (e.g. chiller COP) refers to the condition as <u>at design</u>

BEC specified condition ≠ fluctuating operating condition

Maintaining of design standard = Maintaining of standard of applicable BEC version (BEEO s12(3), 12(4) & 18(2))

#### e.g.

|                                         | BEC Ver at Stage<br>1 Declaration | Current<br>BEC Ver | MRW in 2015<br>and onward                             | Non-MRW in 2015 and onward                                     |
|-----------------------------------------|-----------------------------------|--------------------|-------------------------------------------------------|----------------------------------------------------------------|
| Building with<br>COCR issued<br>in 2013 | BEC 2012                          | BEC 2012<br>Rev.1  | Follow current<br>BEC version, i.e.<br>BEC 2012 Rev.1 | Follow BEC version at<br>Stage 1 Declaration, i.e.<br>BEC 2012 |

- Repairs & retrofits not to change BEC compliance to non-compliance e.g. replacing with a lower efficiency motor
- Good Practice always follow latest BEC version

![](_page_11_Picture_1.jpeg)

### **Other Explanations/Remarks**

- Prescribed building identification
  - OA (occupation permit) usage categorization
  - instrument or land record maintained with the Land Registry or Lands Department (in the form of land register, memorial, government lease, conditions of grant/sale/exchange etc.)
- BEEO not applicable to fire services installation, security system, broadcast reception etc.
- ➤ Change of use of a space may trigger BEC non-compliance e.g. Office (LPD 15 W/m<sup>2</sup>) → Store room (LPD 11 W/m<sup>2</sup>)

![](_page_11_Figure_8.jpeg)

![](_page_12_Picture_1.jpeg)

# **BEC Non-applicable Installations (examples)**

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

External building facade

![](_page_12_Picture_6.jpeg)

Nonmaintained

![](_page_12_Picture_8.jpeg)

(advertisement)

Display

Decoration

![](_page_12_Picture_12.jpeg)

Stage

**Festival** 

![](_page_12_Picture_15.jpeg)

![](_page_13_Picture_1.jpeg)

#### **BEC Non-applicable Installations (examples)**

![](_page_13_Picture_3.jpeg)

(illuminating testing in fume cupboard)

![](_page_13_Picture_4.jpeg)

#### Surgical

![](_page_13_Picture_6.jpeg)

#### Plant growth

![](_page_13_Picture_8.jpeg)

#### Luminaires for sale in a shop

機電

# Lighting Power Density (LPD)

Lighting serving both decoration and as general lighting – LPD requirement applicable

![](_page_14_Picture_1.jpeg)

### Lighting Power Density (LPD) (Cont'd)

#### LPD design approach

- Internal floor area measuring from the internal surfaces of enclosing walls and include thickness of columns and party walls
- To classify a space as a type of space in BEC Table 5.4
- Reference to surrounding e.g. reception area for an office set-up to be classified as "office', and reception area for a gymnasium set-up as "gymnasium"
- Demarcation based on function and nature –
   e.g. in-house staff passage → "corridor"; passage for public → "public circulation area"

![](_page_14_Figure_8.jpeg)

![](_page_15_Picture_1.jpeg)

### **Lighting Control**

#### Control points for office

- 2 nos. Control points
- 4 nos control points
- lower LPD reduced no. of control points
- Control of BEEO applicable lighting to be independent from BEEO non-applicable lighting

![](_page_15_Figure_8.jpeg)

| Area (m <sup>2</sup> ) | Min no. of lighting<br>control points | <u>Area (m²)</u> | Min no. of lighting<br>control points |
|------------------------|---------------------------------------|------------------|---------------------------------------|
| > 0 - 15               | 1                                     | > 180 - 210      | 12                                    |
| > 15 + 30              | 2                                     | > 210 - 240      | 13                                    |
| > 30 - 45              | 3                                     | > 240 - 270      | 14                                    |
| > 45 - 60              | 4                                     | > 270 - 300      | 15                                    |
| > 60 - 75              | 5                                     | > 300 - 330      | 16                                    |
| > 75 - 90              | 6                                     | > 330 - 360      | 17                                    |
| > 90 - 105             | 7                                     | > 360 - 390      | 18                                    |
| > 105 - 120            | 8                                     | > 390 - 420      | 19                                    |
| > 120 - 135            | 9                                     | > 420 - 450      | 20                                    |
| > 135 - 150            | 10                                    | 450 500          | 21                                    |
| > 150 - 180            | 11                                    | > 400 = 500      | -21                                   |

![](_page_15_Figure_10.jpeg)

![](_page_16_Picture_1.jpeg)

| Multi-functional                                          | Space    | Function-s               | LPD (W/m <sup>2</sup> ) |                                     |                                |                                |
|-----------------------------------------------------------|----------|--------------------------|-------------------------|-------------------------------------|--------------------------------|--------------------------------|
| Space                                                     | Function | Luminaire<br>Designation | <u>Qty</u>              | <u>Total</u><br><u>Circuit Watt</u> | <u>Calculated</u>              | <u>Max</u><br><u>Allowable</u> |
|                                                           | Banquet  | LT1                      | 96                      | 720                                 | [720 + 3330 +                  | 23                             |
| Serve different lighting                                  | room     | LT2                      | 90                      | 3330                                | 1344] / 264<br>  _ <b>20 4</b> |                                |
| scenes                                                    |          | LT3                      | 8                       | 1344                                | 20.4                           |                                |
| LT1: 1 x 6.5W CFN 2700K RECESSED DOWNLIGHT                |          | LT4                      | Excluded in LPD         |                                     |                                |                                |
| LT2: 1 x 35W TH SILICONIZED LAMP RECESSED DOWNLIGHT       | Ball     | . LT2                    | 90                      | 3330                                | [3330 + 1344]                  | 23                             |
| LT3: 42 x 4W CANDLE LAMP CHANDELIER                       | room     | LT3                      | 8                       | 1344                                | / 264 = <b>17.7</b>            |                                |
| LT5: 1 x 28W MCF T5 2700K RECESSED TROUGH LUMINAIRE       |          | LT4                      | Excl                    | uded in LPD                         |                                |                                |
| EXIT SIGN (BACKUP WITH 2HRS BATTERY & CHARGER NI-MH TYPE) | Seminar  | LT1                      | 96                      | 720                                 | [720 + 3360] /                 | 16                             |
|                                                           | room     | LT5                      | 112                     | 3360                                | 264 = <b>15.5</b>              |                                |
|                                                           | NA       |                          |                         |                                     |                                |                                |

![](_page_16_Figure_3.jpeg)

EXIT

![](_page_16_Picture_4.jpeg)

Ball Room / Banquet Room arrangement - LPD of combination of luminaires < 23 W/m<sup>2</sup>

17

![](_page_16_Picture_6.jpeg)

Seminar room arrangement - LPD of combination of luminaires < 16 W/m<sup>2</sup>

EMSD

機電工程署

![](_page_17_Picture_1.jpeg)

### **BEC Non-applicable Installations (examples)**

- Chiller operating at high electrical voltage of 3.3 kV
- AHU solely for surgical operation

- Fan solely for smoke extract
- Exhaust fan for fume cupboard for research

### System Load

18

max 29°C WB & < 35°C DB

| Condition | Season | Applications              | Temperature / Relative Hum                                                                                                                      | erature / Relative Humidity  |  |  |  |  |
|-----------|--------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|--|--|--|
| Indoor,   | Summer | Office and                | Minimum dry bulb temperature                                                                                                                    | 23°C                         |  |  |  |  |
| for human |        | Classroom                 | Minimum relative humidity                                                                                                                       | 50%                          |  |  |  |  |
| Winter    |        | Other applications        | Minimum dry bulb temperature                                                                                                                    | 22 <sup>0</sup> C            |  |  |  |  |
|           |        |                           | Minimum relative humidity                                                                                                                       | 50%                          |  |  |  |  |
|           | Winter | Hotel                     | Maximum dry bulb temperature                                                                                                                    | 24°C                         |  |  |  |  |
|           |        | Maximum relative humidity | 50%                                                                                                                                             |                              |  |  |  |  |
|           |        | Other applications        | Maximum dry bulb temperature                                                                                                                    | 22°C                         |  |  |  |  |
|           |        |                           | Maximum relative humidity                                                                                                                       | 50%                          |  |  |  |  |
| Outdoor   | Summer | All applications          | Maximum dry bulb temperature of<br>wet bulb temperature lower than 2<br>or<br>Maximum wet bulb temperature<br>with dry bulb temperature lower t | 35°C wit<br>29°C,<br>of 29°C |  |  |  |  |
|           | Winter | All applications          | Minimum dry bulb temperature                                                                                                                    | 7°C                          |  |  |  |  |

![](_page_18_Picture_1.jpeg)

### Separate Air Distribution System for Process Zone

![](_page_18_Figure_3.jpeg)

#### ≻Exemptions

- Supply air to comfort zone (Office Space) no more than 25% of total air flow
- comfort only zone has a small conditioned area of smaller than 100 m<sup>2</sup>,
- Supply air to process zone (Server Space) no more than 25% of total air flow

![](_page_18_Figure_8.jpeg)

![](_page_19_Picture_1.jpeg)

#### **Ductwork Leakage Limit**

- Based on DW143
- Lower L/s per m<sup>2</sup> for higher pressure

| Leakage<br>Class | Operating Static<br>Pressure (Pa) | Air Leakage Limit<br>(L/s per m <sup>2</sup> of duct surface) |
|------------------|-----------------------------------|---------------------------------------------------------------|
| 1                | above 750 to 1000                 | 0.009 x p <sup>0.65</sup>                                     |
| 11               | above 1000 to 2000                | 0.003 x p <sup>0.65</sup>                                     |
|                  | above 2000                        | 0.001 x p <sup>0.65</sup>                                     |

# Max System Fan Motor Power (P<sub>T</sub>) – CAV 1.6 and VAV 2.1 W / L/s

![](_page_19_Figure_7.jpeg)

- ➢ PAU fan to be excluded
- Return air fan (if in place) to be included
- Fan motor power can be based on flow/shaft power curve (and efficiency of motor & mechanical drive)
- > Exemption for  $P_T < 5kW$  # and FCUs

CAV fan motor drawing 3 kW <sup>#</sup> at 2.5 m<sup>3</sup>/s

VAV fan motor drawing 7 kW at 4 m<sup>3</sup>/s

20

System fan motor power for CAV = 3 kW  $^{\#}$  / 2.5 m<sup>3</sup>/s = 1.2 W/ L/s

System fan motor power for VAV = 7 kW / 4 m<sup>3</sup>/s = 1.75 W/ L/s

機電

![](_page_20_Picture_1.jpeg)

#### System Fan Motor Power – Deductible Fan Motor Power

![](_page_20_Figure_3.jpeg)

 $\begin{array}{l} \underline{\text{Deductible fan motor power P}_{f}} \\ \text{total filter pressure drop } p_{d} = 450 \text{ Pa} & V = 5.5 \text{m}^{3} \text{/s} \\ \eta_{m} = 0.92 \quad \eta_{d} = 0.97 \quad \eta_{f} = 0.8 \\ \hline P_{f} = V \ x \ (p_{d} - 250) \ / \ (\eta_{m} \ x \ \eta_{d} \ x \ \eta_{f}) \quad [p_{d} \ge 250 : \text{ deductible}] \\ = 5.5 \ x \ (450 - 250) \ / \ (0.92 \ x \ 0.97 \ x \ 0.8) \\ = 1,541 \ \text{W or } 1.54 \ \text{kW} \end{array}$ 

System fan motor power ( $\mathbf{P}_{T}$ ) for a VAV system with supply & return air fans and deductible fan motor power  $\mathbf{P}_{T} = FSP_{S} / (\eta_{m} \times \eta_{d}) - \mathbf{P}_{f} + FSP_{R} / (\eta_{m} \times \eta_{d})$   $= [7 / (0.92 \times 0.97)] - 1.54 + [4 / (0.9 \times 0.97)] kW$  = 7.84 - 1.54 + 4.58 kW = 10.9 kWSystem fan motor power  $= \mathbf{P}_{T} / V = 10.9 / 5.5 kW/m^{3}/s$  = 1.98 W/L/swhich fulfils the 2.1 W/L/s requirement

### **Pumping System Variable Flow**

- > System capable of operating at  $\leq$  50% of design flow
- Flow reduction by
  - Chiller & pump sequencing
  - Valves on/off/modulation
  - Reduced speed of variable/multi-speed pumps
- Manual operation to achieve flow reduction NOT acceptable
- Exemptions
  - Applicable to small system or system with supply water temperature reset

### Water Piping Frictional Loss

|                              |                             | E E ···           | A A PAC        |         |
|------------------------------|-----------------------------|-------------------|----------------|---------|
| Applicable to chilled water, | <u>Piping Diameter (mm)</u> | Greater than 50mm | <u>50mm</u>    | p.<br>p |
| neated water and             | Frictional loss (Pa/m)      | ≤ 400 Pa/m        | Not applicable |         |
| condenser water piping       | Water flow velocity (m/s)   | ≤ 3 m/s           | ≤ 1.2 m/s      |         |
| non an malin                 |                             |                   |                |         |
|                              | 22                          | 機電工程              | 🛃 😰 EMS        | D       |

![](_page_21_Picture_12.jpeg)

![](_page_21_Picture_13.jpeg)

![](_page_22_Picture_1.jpeg)

#### **System Control**

Provision in thermostat/humidistat of wide range temperature setting

- Allows higher operation setting flexibility
- Not applicable to a unitary air-conditioner's thermostat/humidistat that is
  - integral to the air-conditioner, and
  - supplied by manufacturer as standard ancillary
- Off-hours control
  - System > 10 kW capacity
    - automatic shut down or control setback
      - (e.g. room temp (cooling)  $23^{\circ}C \rightarrow 28^{\circ}C$ )
    - timer, occupancy sensor etc.
  - Hotel guest room master control device card key

Spaces forming a zone to be on same floor

![](_page_22_Picture_15.jpeg)

![](_page_23_Picture_1.jpeg)

### **Thermal Insulation**

- "Outdoor", "Unconditioned", "Conditioned" each at uniformity temp and humidity
- False ceiling void regarded as unconditioned, unless a return air plenum or of perforated type
- The requirement of insulation thickness is only applicable to
  - site-installed pipework and ductwork
  - site assembled AHU/FCU casing
- Tabulated thickness based on heat transfer equations -

![](_page_23_Figure_9.jpeg)

![](_page_24_Picture_1.jpeg)

### Thermal Insulation (Cont'd)

#### Supplement of tabulated thickness for ductwork for 10°C temperature difference

| Ambient Condition                                                                    | 1                         | Outo | door  |      | Unconditioned Space |    |     | Conditioned<br>Space |             |    |
|--------------------------------------------------------------------------------------|---------------------------|------|-------|------|---------------------|----|-----|----------------------|-------------|----|
| Thermal conductivity $\lambda$ (W/m-°C)                                              | 0.024 0.04 0.024 0.04     |      | 0.024 | 0.04 |                     |    |     |                      |             |    |
| Surface coefficient h (W/m <sup>2</sup> -°C)                                         | 9                         | 13.5 | 9     | 13.5 | 5.7                 | 10 | 5.7 | 10                   | 0 any value |    |
| Temperature difference between air inside duct/casing and surrounding of duct/casing | Insulation thickness (mm) |      |       |      |                     |    |     |                      |             |    |
| 10 °C                                                                                | 13                        | 13   | 21    | 14   | 20                  | 13 | 33  | 19                   | 13          | 18 |

25

- Water vapour retardant type insulation
  - closed cell type
  - fibreglass with multi-layer double-side reinforced aluminium foil
  - insulation coated with heavy mastic etc.
- Good Practice metal cladding

![](_page_25_Picture_1.jpeg)

### **Unitary Air Conditioner**

- Single package window type and wall mounted split type room air conditioner under the Labelling Scheme (Cap 598) - to fulfill Energy Label Grade 1 or 2
- Room air conditioners other than single package window type and wall mounted split type - to fulfill BEC min coefficient of performance (COP)
- Equivalent COP range of Energy Label Grade 1 & 2 TG Table 6.12.2(a)

![](_page_25_Figure_6.jpeg)

![](_page_26_Picture_0.jpeg)

#### **Other Explanations/Remarks**

 ➤ VAV fan motor and variable speed pump motor (5kW) operating power "≤ 55% of design input power at 50% flow"
 ⇒ adoption of variable speed drive

COP (coefficient of performance) requirements

> not applicable to absorption chiller, heat recovery chiller, ice making chiller, evaporatively-cooled chiller

#### Good practice

- Automatic controls to integrate with building's BMS with energy management function
- Data logging & transmission to BMS

![](_page_26_Picture_9.jpeg)

![](_page_27_Picture_1.jpeg)

### **BEC Non-applicable Installations (examples)**

- Equipment or cabling at high voltage or extra low voltage
- Generator set and outgoing cabling

- Motor of fire services pump and cabling solely for the pump
- Appliances not fixed in position such as task lighting

### **Circuit Copper Loss**

- Sub-circuit may consist of a common portion with branchoffs from an intermediate distribution board
- Approach in calculating the percentage of copper loss for such sub-circuit - TG Table 7.4(b)iii)

![](_page_27_Figure_10.jpeg)

![](_page_28_Picture_1.jpeg)

#### Circuit Copper Loss (Cont'd)

![](_page_28_Figure_3.jpeg)

- All branch portions and common portion to be included
- I<sub>N</sub> to account for triplen harmonics or unbalanced 1-phase loads
- Diversity factor may be applied :

 $Diversity \ Factor \ (df) = \frac{\text{RMS Design Current of Common Portion}}{\sum \text{RMS Design Current of All Branch Portions}}$ 

| Root Mean Square<br>(rms) Design<br>Current Ij <sub>b</sub> (A) | Resistance r <sub>i</sub><br>(mΩ/metre)                                                                               | Length<br>Lj<br>(metre)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Copper Loss<br>P <sub>copper</sub> (W)                                                                                                                            | Sub-circuit<br>Active Power<br>(W)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Im                                                              | r <sub>m</sub>                                                                                                        | L <sub>m</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(3 \times l_m^3 + l_m N^2) \times r_m \times L_m \times 1/1000$                                                                                                  | √3 x 380 x l <sub>m1</sub><br>x cosθ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11                                                              | r <sub>1</sub>                                                                                                        | L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(3 \times 11^{2} + 11_{N}^{2}) \times r_{1} \times L_{1} \times 1/1000$                                                                                          | (Im1 is the value<br>of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 12                                                              | r <sub>2</sub>                                                                                                        | L <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(3 \times 12^2 + 12_N^2) \times r_2 \times L_2 \times 1/1000$                                                                                                    | fundamental<br>component,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13                                                              | r3                                                                                                                    | Lj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3 x <b>I3</b> <sup>2</sup> + <b>I3</b> <sub>N</sub> <sup>2</sup> )<br>x r <sub>3</sub> x L <sub>3</sub> x 1/1000                                                 | and<br>I <sub>m1</sub> ≠I <sub>m</sub> ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 14                                                              | r <sub>4</sub>                                                                                                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (3 x <b>I4</b> <sup>2</sup> + <b>I4</b> <sub>N</sub> <sup>2</sup> )<br>x r <sub>4</sub> x L <sub>4</sub> x 1/1000                                                 | I <sub>m</sub> is the root<br>mean square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15                                                              | T5                                                                                                                    | Ls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3 x 15 <sup>2</sup> + 15 <sub>N</sub> <sup>2</sup> )<br>x r <sub>5</sub> x L <sub>5</sub> x 1/1000                                                               | value of the<br>fundamental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16                                                              | ré                                                                                                                    | Lő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3 x <b>16</b> <sup>2</sup> + <b>16</b> <sub>N</sub> <sup>2</sup> )<br>x r <sub>6</sub> x L <sub>6</sub> x 1/1000                                                 | harmonic<br>components:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 17                                                              | 17                                                                                                                    | L7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (3 x 17 <sup>2</sup> + 17 <sub>N</sub> <sup>2</sup> )<br>x r <sub>7</sub> x L <sub>7</sub> x 1/1000                                                               | and cos0 is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 18                                                              | ra                                                                                                                    | La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(3 \times 18^2 + 18_N^2)$                                                                                                                                        | displacement<br>power factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                 | Root Mean Square<br>(rms) Design<br>Current Ijb (A)<br>Im<br>I1<br>I2<br>I2<br>I3<br>I4<br>I5<br>I6<br>I6<br>I7<br>I8 | Root Mean Square<br>(rms) Design<br>Current Ijb (A)Resistance ri<br>(mΩ/metre)ImImImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrmImrm <td< td=""><td>Root Mean Square<br/>(rms) Design<br/>Current Ijb (A)Resistance ri<br/>(mΩ/metre)Length<br/>Li<br/>(metre)ImrmLmImrmLmI1r1L1I2r2L2I3r3L3I4r4L4I5r5L5I6r6L6I7r7L7I8r8L8</td><td><math display="block">\begin{array}{ c c c c c } \hline Resistance r_i &amp; Length \\ (m\Omega)/metre) &amp; P_{copper} (W) \\ \hline metre) &amp; P_{copper} (W) \\ \hline metre &amp; P_{copper} (</math></td></td<> | Root Mean Square<br>(rms) Design<br>Current Ijb (A)Resistance ri<br>(mΩ/metre)Length<br>Li<br>(metre)ImrmLmImrmLmI1r1L1I2r2L2I3r3L3I4r4L4I5r5L5I6r6L6I7r7L7I8r8L8 | $\begin{array}{ c c c c c } \hline Resistance r_i & Length \\ (m\Omega)/metre) & P_{copper} (W) \\ \hline metre) & P_{copper} (W) \\ \hline metre & P_{copper} ($ |

Sub-circuit copper loss =  $\sum P_{copper}$  (sum of above 9 portions)

 $= 1/1000 \times \left\{ \left[ \left( 3 \times I_m^2 + I_m N^2 \right) \times r_m \times L_m \right] + \sum \left[ 3 \times \left( I_j \cdot b \times df \right)^2 + \left( I_j \cdot N \times df \right)^2 \right] \times r_j \times L_j \right\} \quad \text{where } j = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ where } 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8 \times I_j \cdot N = 1 \text{ to } 8$ 

Sub-circuit % copper loss =  $\sum P_{copper} \div$  sub-circuit active power

 $= 1/1000 \times \left\{ \left[ \left( 3 \times I_m^2 + I_m N^2 \right) \times r_m \times L_m \right] + \sum \left[ 3 \times \left( I j_b \times df \right)^2 + \left( I_{jN} \times df \right)^2 \right] \times r_j \times L_j \right) \right\}$ 

 $\div ((\sqrt{3} \times 380 \times I_{m1} \times \cos \theta))$ 

29

![](_page_28_Picture_14.jpeg)

![](_page_29_Picture_1.jpeg)

# Circuit Copper Loss (Cont'd)

- Electricity supplier metering point may be a point to differentiate CBSI (e.g. in common area, the switch room) from non-CBSI
- Circuit under responsibilities of two parties
  - Calculation of upstream circuit copper loss to account for downstream (future) portion
  - Maintain proper record of sizing

### Min Motor Efficiency

#### Governed

Motor of telescopic gondola Motor of plumbing water pump Motor of water feature pump

#### **Not Governed**

Submersible pump Motor rated output power <0.75kW 2-speed motor

Motor operating above 40°C

![](_page_29_Figure_13.jpeg)

![](_page_29_Figure_14.jpeg)

#### Max 125% Motor (>5kW) Sizing

30

NEMA Design C and IEC Design H

Not govern motor for high starting torque e.g. NEMA Design C & D and IEC Design H

![](_page_29_Picture_18.jpeg)

![](_page_30_Picture_1.jpeg)

#### **Power Quality**

- Assume voltage distortion negligible, which is also reduced with better THD
- 1-phase equipment (PC, electronic ballast etc.) triplen harmonics (3rd, 9th, 15th, 21st etc.)
- Rectifier :  $h = kq \pm 1$  h: harmonic order, k: integer, q: pulse no. (nos. of rectifiers)
  - 6-pulse VSD : THD =  $\sqrt{I_5^2 + I_7^2 + I_{11}^2} \times 100\% = 26.2\%$
- 3-phase I<sub>b</sub>=100A, DPF=0.85, THD=38.6%, 40m, 35mm<sup>2</sup>4/C/PVC/SWA/PVC Circuit copper loss = 1.14 kW (which is app 60% higher than a linear load)
   > TPF = DPF √1+ THD<sup>2</sup>
   ⇒ THD ↑ TPF ↓

![](_page_30_Figure_8.jpeg)

Circuit at or above 400A (protective device rating) (

![](_page_31_Picture_1.jpeg)

11/F and above

10/F

1/F

G/F

AHF

10/F ELEC RM

LV SwBd inside G/F

400A protective

device

SWITCHROOM

# **Connection Points for TPF & THD Correction Devices**

3-phrase circuit to electricity supplier meter Floor latera tee-offs To allow flexibility for future connection in fulfillir allowable min TPF & max THD CONNECTION BOX **Connection points – spare ways** Adequate spacing CT chamber, correction device Alternative spare ways provision – just before first lateral tee-off (right diagram) at each of the floor lateral tee-offs MMD at each of the DB downstream of the tee-off Connection points to be shown on drawings F/F TRUMONG (E) ARCS OF Sw.Bd RESERVED TRUNKING (N) SPACE FOR THF & THD CORRECTION DEVICES  $\boxtimes$ M 32 CONNECTION 80490

#### **Other Explanations/Remarks**

tee-off for LDB12 on 12/F

length of portion m

 $= n_{f} x h = 13h$ 

33

- Careful planning of 1-phase loads among the three phases
- Metering
  - installation required (hand-held ones not acceptable)
  - data-logging & analytical function (digital power analyzer or multi-function meter, complete with CTs)
  - measuring 31st order harmonics
  - 4-CT configuration better than 3-CT
  - Good Practice data to BMS with energy management function
- TG Table 7.8 on conductor resistance
- Theory and approach on calculation of circuit copper loss, with illustrative example

![](_page_32_Picture_11.jpeg)

![](_page_32_Picture_12.jpeg)

![](_page_33_Picture_1.jpeg)

#### **Other Explanations/Remarks (Cont'd)**

| Table 7.9.1 (a) : Illust                                                                                                                                      | ration of                              | Conductor Design Considerations                                                                                                              |                  |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|
| DESIGN CONSIDERATIONS                                                                                                                                         | Abbrev.                                | Equation described in TG clause<br>7.8.3 / Relevant TG paragraphs                                                                            | Floor<br>tee-off | Riser  |
| Floor height (metre)                                                                                                                                          | h                                      |                                                                                                                                              | NA               | 3      |
| Nos. of floors from G/F to floor of<br>first lateral tee-off                                                                                                  | nr                                     |                                                                                                                                              | NA               | 13     |
| Length of floor lateral tee-off (metre)                                                                                                                       | L                                      | Not applicable (NA)                                                                                                                          | 10               | NA     |
| Nos. of tee-offs, one per floor, for all<br>the eight floors from 12/F to 19/F                                                                                | tee-offs, one per floor, for all<br>nt |                                                                                                                                              | NA               | 8      |
| Conductor ambient temperature (°C)                                                                                                                            | t.                                     | TG clause 7.8.3                                                                                                                              | 3                | 0      |
| Allowable copper loss (%)                                                                                                                                     | %loss                                  | TG Table 7.4 (b) ii)                                                                                                                         | 1.5              | i %    |
| Diversity factor                                                                                                                                              | df                                     | TG Table 7.4(b) iii)                                                                                                                         | NA               | 0.85   |
| Fundamental current (A)                                                                                                                                       | - Iı                                   | TG clause 7.8.3                                                                                                                              | 45               | 306    |
| Total harmonic distortion (%)                                                                                                                                 | THD                                    | THD = $\frac{\sqrt{\sum_{h=2}^{\infty} (l_h)^2}}{l_1}$<br>TG clauses 7.8.3 & 7.8.4                                                           | 15%              | NA     |
| Neutral current                                                                                                                                               | l <sub>N</sub>                         | $I_N = 3 \times \sqrt{l_3^2 + l_6^2 + l_9^2 + \dots}$<br>TG clause 7.8.3                                                                     | 0                | 0      |
| Design root mean square phase<br>current (A)                                                                                                                  | Ь                                      | $I_{\text{D}} = I_1 \ge \sqrt{(1\!+\!THD^2)}$                                                                                                | 45.5             | 309,4  |
| Protective device rating (A)                                                                                                                                  | In.                                    | $\mathbf{I}_b \leq \mathbf{I}_n$                                                                                                             | 55               | 320    |
| Total power factor                                                                                                                                            | TPF                                    | TG clauses 7.8.3 & 7.8.4                                                                                                                     | 0.85             | NA     |
| Displacement power factor                                                                                                                                     | DPF<br>cos0                            | $\cos\theta = \text{TPF} \times \sqrt{(1 + \text{THD}^2)}$                                                                                   | 0.86             | NA     |
| Effective length of whole sub-circuit<br>(metre) (for purpose of quick estimation<br>of Max r only, equation alongside does<br>not appear in TG clause 7.8.3) | EL                                     | $\begin{split} \textbf{EL} &= \textbf{h} \times (\textbf{n}_{1} + 7/8 + 6/8 + 5/8 + \\ &4/8 + 3/8 + 2/8 + 1/8) + \textbf{L}_{1} \end{split}$ | 59               | 1.5    |
| Max resistance (m $\Omega$ per metre) of conductor                                                                                                            | Max r                                  | $\frac{\% loss \times \sqrt{3} \times 380 \times I_1 \times cos\theta \times 1000}{(3 \times I_0^2 + I_1) \times L}$                         | 1.0332           | 0.1519 |

| Table 7.9.1 (b) : Illustra                                  | tion of C      | able Selection (4/C PVC/SWA                                            | )                                         |                                 |
|-------------------------------------------------------------|----------------|------------------------------------------------------------------------|-------------------------------------------|---------------------------------|
| CABLE SELECTION                                             | Abbrev.        | Equation described in TG.<br>clause 7.8.3 / Relevant TG.<br>paragraphs | #<br><u>Tee-ott</u><br>16 mm <sup>2</sup> | Riser<br>150<br>mm <sup>2</sup> |
| Conductor resistance (m $\Omega$ _per metre)                | r.             | TG Table 7.8 and Wiring<br>Code                                        | 1.4                                       | 0.15                            |
| Permitted conductor temperature ( <sup>6</sup> C)           | tp             | TG clause 7.8.3 and Wirmon                                             | .70                                       | 70                              |
| Conductor tabulated current carrying<br>capacity (A)        | l,             | Code                                                                   | 83                                        | 332                             |
| Conductor operating temperature (°C) at $\mathbf{I}_b$      | t <sub>1</sub> | $t_1 = t_e + \frac{(3I_b + I_N)^2}{(3I_1)^2} (t_p - 30)$               | 42.02                                     | 64,74                           |
| Ratio of conductor resistance at $t_{\rm 1}$ to $t_{\rm p}$ | $R_t/R_p$      | $\frac{R_{i_{j}}}{R_{p}} = \frac{230 + t_{i_{j}}}{230 + t_{p}}$        | 0.907                                     | 0.982                           |

Remark# to 16 mm<sup>2</sup> cable selection

A cable of smaller size having a r value greater than Max r is selected as a trial, as the actual current with the application of diversity factor df would be lower than  $I_{bc}$  the cable can be upgraded if needed based on actual  $P_{copper}$  calculated in TG Table 7.9.1(c). (Later calculations in TG Table 7.9.1(c) justify the trial selection of 16mm<sup>2</sup>.)

| CU<br>AD | Curren<br>I <sub>6</sub> ( <i>df</i><br><i>applied</i><br>(A) | Resistance<br>$f(R_{\ell}/R_{\rho})$<br>applied)<br>$at t_{1}(m\Omega)$<br>per metre) | Longth L<br>(metro) |           | Copper lo<br>(VVa                            | opper ioss P <sub>copper</sub><br>(Watt) |         | euit active<br>P (Watt) |  |
|----------|---------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|-----------|----------------------------------------------|------------------------------------------|---------|-------------------------|--|
| 3        | 309.4                                                         | 0.147                                                                                 | $n_1 \times h$      | 39        |                                              | 1650.9                                   |         |                         |  |
| 3        | 38.7                                                          | 1.269                                                                                 | Le                  | 10        |                                              | 57.0                                     |         |                         |  |
| 2        | 270.7                                                         | 0.147                                                                                 | h                   | 3         |                                              | 97.2                                     |         |                         |  |
| - 3      | 38.7                                                          | 1.269                                                                                 | L.                  | 10        |                                              | 57.0                                     |         |                         |  |
| 2        | 232.1                                                         | 0.147                                                                                 | h                   | 3         | 110                                          | 71.4                                     |         |                         |  |
| 3        | 38.7                                                          | 1.269                                                                                 | te                  | .10       | 113×16                                       | 57.0                                     |         |                         |  |
| 1        | 193.4                                                         | 0.147                                                                                 | h                   | 3         | analised                                     | 49.6                                     | √3 x    |                         |  |
| - 1      | 38.7                                                          | 1.269                                                                                 | 4                   | 10        | + 1 <sub>N</sub> <sup>2</sup> ] 57.0<br>31.7 | 380 x<br>Imi X                           | 173,108 |                         |  |
| - 1      | 154.7                                                         | 0.147                                                                                 | b.                  | з         |                                              |                                          |         |                         |  |
| 3        | 38.7                                                          | 1.269                                                                                 | he.                 | 10        | 1000                                         | 57.0 COSE                                | cos0    |                         |  |
| .1       | 116.0                                                         | 0.147                                                                                 | h                   | 3         | / 1000 57.0                                  | 17.9                                     | 17.9    |                         |  |
| 13       | 38.7                                                          | 1.269                                                                                 | L.                  | 10        |                                              | 57.0                                     |         |                         |  |
| -7       | 77.4                                                          | 0.147                                                                                 | h                   | з         |                                              | 7.9                                      |         |                         |  |
| .3       | 38.7                                                          | 1.269                                                                                 | Le.                 | 10        |                                              | 57.0                                     |         |                         |  |
| 13       | 38,7                                                          | 0.147                                                                                 | h.                  | 3         |                                              | 2.0                                      |         |                         |  |
| 13       | 38.7                                                          | 1.269                                                                                 | L.                  | 10        |                                              | 57.0                                     |         |                         |  |
|          |                                                               | (A)                                                                                   |                     |           | Total                                        | 2,384                                    |         | -                       |  |
| 3        | 38.7                                                          | 1.269                                                                                 |                     | 10<br>Cop | Total                                        | 57.0<br>2,384<br>1.38%                   |         | ()<br>()                |  |

![](_page_34_Picture_1.jpeg)

# **BEC Non-applicable Installations (examples)**

- Service lift (food transportation)
- Stairlift at stairway
- Lift in performance stage

- Lifting platform for wheelchair
- Temporary construction hoist lift

機電工程

Industrial truck load freight lift

### **Max Allowable Electrical Power**

- Discourage over-sizing of driving motor & encourage low loss driving controller
- Applicable to lift (rated load & rated speed) and escalator/conveyor (no load & rated speed)
- "Rated load", "rated speed", "rise", "nominal width", etc. to share meanings in Cap 618
- Not applicable to certain shuttle lift
- Values obtainable from suppliers
- Hydraulic lift irrespective of direct acting (bottom), side acting, or indirect acting
- Multi-speed escalator/conveyor : allowable value based on top speed
- Public service escalator/conveyor a system connecting a building to a traffic station or public transport interchange
- Heavy duty escalator found in railway station
- Passenger conveyor between 1200 mm and 1400 mm width interpolation to arrive at max allowable value

![](_page_35_Picture_1.jpeg)

#### Min Allowable TPF

TPF to account for the combined effect of the DPF of the motor and its driving controller's THD, .: TPF < DPF</p>

| Lift                  | <ul> <li>rated load</li> <li>rated speed upward</li> </ul> | • TPF ≥ 0.85<br>(of the motor drive circuit at the isolator connecting to the                                         |
|-----------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| Escalator             | • brake load                                               | building's electrical supply circuit; motor drive = motor +<br>driving controller)                                    |
| Passenger<br>Conveyor | rated speed                                                | <ul> <li>A correction device if needed can be installed at the motor<br/>control centre of the motor drive</li> </ul> |

- Lift TPF at rated load rated speed upward may be site-test verified
- Escalator/Passenger conveyor TPF -
  - DPF of driving motor can be identified from its Motor data sheet (usually available from motor manufacturer)
  - <u>Motor data sheet</u> records its testing parameters and typically gives a range of values of DPF and load or torque (Newton-metre)
     <u>Running test</u> - (Rated torque = 112.4)

![](_page_35_Figure_9.jpeg)

| Load<br>Nm | Voltage<br>V | Current<br>A | RPM    | Input power<br>KW | Outp. Power<br>KW | Effic. | Power<br>factor | Slip % |
|------------|--------------|--------------|--------|-------------------|-------------------|--------|-----------------|--------|
| 1.6        | 380          | 14.7         | 1499   | 1.616             | 0.247             | 0.15   | 0.17            | 0.1    |
| 23.0       | 380          | 16.1         | 1487   | 5.117             | 3.582             | 0.70   | 0.48            | 0.9    |
| 45.0       | 380          | 19.3         | 1475   | 8.759             | 6.944             | 0.79   | 0.69            | 1.7    |
| 67.4       | 380          | 23.7         | 1461   | 12.575            | 10.318            | 0.82   | 0.81            | 2.6    |
| 89.9       | 380          | 29.0         | 1445   | 16.573            | 13.610            | 0.82   | 0.87            | 3.7    |
| 12.4       | 380          | 34.9         | 1427   | 20.758            | 16.795            | 0.81   | 0.90            | 4.9    |
| 34.9       | 380          | 41.4         | 1405   | 25.083            | 19.842            | 0.79   | 0.92            | 6.4    |
| 57.4       | 380          | 48.2         | 1378   | 29.485            | 22.711            | 0.77   | 0.93            | 8.1    |
| 78.9       | 380          | 54.6         | 1359   | 31.488            | 25.458            | 0.81   | 0.88            | 9.4    |
| 01.9       | 380          | 62.5         | 1332   | 35.830            | 28.167            | 0.79   | 0.87            | 11.2   |
| 24.1       | 380          | 71.0         | 1301   | 40.200            | 30.529            | 0.76   | 0.86            | 13.3   |
| 46.5       | 380          | 80.9         | 1261   | 44.919            | 32.547            | 0.72   | 0.84            | 15.9   |
| 69.0       | 380          | 93.9         | 1201   | \$0,270           | 33.829            | 0.67   | 0.81            | 19.9   |
|            |              |              | hard a | 1414              |                   | -      |                 |        |

![](_page_36_Picture_1.jpeg)

### Lift Decoration Load

- Consideration of lighter alternative slightly thinner stone panel, light-weight stone panel (with aluminium backing) or vinyl tiling (floor)
- REA/designer and architect/owner collaboration

# Lift Parking Mode

Applicable to lift bank

- Lift idling actuation (at low traffic) by auto programming or manual switching at supervisory panel or control switch at lift lobby (Low traffic – traffic demand falling to say 20%)
- > Automatic shutting-off of ventilation or air-conditioning (AC) at idling, with exemptions (below)
- Delayed stopping of AC and delayed restart energy saving Vs AC compressor sustaining

|      | _         |          |    |            |                               | Roof         | Lift designation                        | Exemption<br>applicable | Justifications / Remarks                                    |
|------|-----------|----------|----|------------|-------------------------------|--------------|-----------------------------------------|-------------------------|-------------------------------------------------------------|
| 44   | A<br>IIII | B        |    |            |                               | 6/F          | Observation lift A (glazed car wall)    | Yes                     | Travelling through outdoor space                            |
| ્ય   |           | <b>†</b> |    |            | Air-<br>conditioned<br>atrium |              | Observation lift B (glazed car wall)    | No                      | Not travelling through outdoor or unconditioned space       |
|      |           |          |    |            | G/F to 7/F                    | 3/F          | Observation lift C<br>(glazed car wall) | Yes                     | Travelling through un-<br>conditioned space, the<br>carpark |
|      | -         |          | C  | D          |                               | <br>G/F      | Ordinary lift D (NO glazed car wall)    | No                      | Not an observation lift                                     |
| 1111 |           |          | 中本 | <b>†</b> ∳ | Car park (unconditioned s     | pace)<br>B/F | 37                                      | 機                       | 電工程署 🛃 EMSD                                                 |

![](_page_37_Picture_1.jpeg)

#### Max Allowable THD

| Lift                  | <ul> <li>rated load</li> <li>rated speed upward</li> </ul> | <ul> <li>• THD ≤ values given in BEC Tables 8.6.1 &amp; 8.6.2 15% to 40%)<br/>(in each phase, of the motor drive circuit at the isolator</li> </ul> |
|-----------------------|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Escalator             | • no load                                                  | connecting to the building's electrical supply circuit; motor<br>drive = motor + driving controller)                                                |
| Passenger<br>Conveyor | <ul> <li>rated speed</li> </ul>                            | A correction device if needed can be installed at the motor control centre of the motor drive                                                       |

May be site verified

THD contributes to TPF

#### **Metering & Monitoring Facilities**

38

- Permanent fixed metering devices or provision for measurement
- Data-logging & analytical function (digital power analyzer or multi-function meter, complete with CTs)
- Measuring 31st order harmonics
- Total kVA to base on average line voltage and average line current
- Good Practice

ЦΙ.

- Permanent metering transmit measured data to BMS
- Provision for measurement Proper provision of tap-off points (isolation switches) & proper insulation

![](_page_37_Figure_14.jpeg)

voltage tap-off points should be provided with isolating switch or proper protective device, and section of the conductors for hooking on of CT clamps should be properly insulated

![](_page_38_Picture_1.jpeg)

#### <u>Good Engineering Practice –</u> Normalization of Lift Energy Consumption

Normalize lift energy consumption based on its energy consumed per unit load per unit distance travelled

Benchmarking parameter, J/kg-m -

Reflects the energy performance of a lift or a bank of lifts accounting for both the power consumption of the motor drive as well as the intelligence of the supervisory controls

$$J/kg-m = \frac{E_T}{\sum_{i=1}^n W_i D_i}$$

![](_page_38_Picture_7.jpeg)

<sup>®</sup> Lam D.C.M., So A.T.P., Ng T.K., "Energy conservation solutions for lifts and escalators of Hong Kong Housing Authority", *Elevator Technology 16, Proceedings of 16th World Congress on Elevator Technologies*, The International Association of Elevator Engineers, Helsinki, June, 2006, pp. 190-199

39

![](_page_39_Picture_0.jpeg)

Designed building

Model building and calculate design energy

Fulfill basic requirements

in BEC clause 9.4

(specifying compliance with relevant but not all clauses in

BEC Sections 5 to 8)

No

Adjust model of

designed building

to reduce design

energy

# **TG – Performance Based Approach**

 $\geq$ 

Proposed design Provides design flexibility to encourage energy efficient Fulfill requirements in BEC Sections 1 to 4 innovative features Either adopt the prescriptive approach or the performance-based approach Lists building energy simulation programs commonly used Prescriptive approach Performance-based approach locally Fulfill BEC Section 9 Justifiable examples Fulfill BEC lighting having higher LPD Sections 5 to 8 Reference building but lower energy Model building and calculate energy budget consumption as a result of its energy efficient control Fulfill BEC Sections 5 to 8 (all using daylight measuring clauses) head, look out sensor & look down sensor chiller having lower full ٠ load COP but lower energy Design energy consumption as a result of Energy its higher part load COP budget adoption of photovoltaic Yes **BEC Compliance** 機電工程署

40

### **TG – Performance Based Approach**

![](_page_40_Picture_1.jpeg)

![](_page_40_Figure_2.jpeg)

# **TG - Major Retrofitting Works**

![](_page_41_Picture_1.jpeg)

![](_page_41_Figure_2.jpeg)

# **TG - Major Retrofitting Works**

![](_page_42_Picture_1.jpeg)

![](_page_42_Figure_2.jpeg)

![](_page_43_Figure_0.jpeg)

![](_page_44_Figure_0.jpeg)

# **TG – Major Retrofitting Works**

![](_page_45_Picture_1.jpeg)

EMSD

R

| Space type                                                 |                               | and the state of the            | riace two                                                                                                                               | Place three                                                                                                                     |  |  |
|------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                            |                               | Office 1                                                                                                                   | Office 2                                                                                                                                | Corridor<br>(internal corridor<br>connecting Office 1<br>and Office 2)                                                          |  |  |
| Works area<br>area)                                        | a (internal floor             | 470 m <sup>2</sup>                                                                                                         | 50 m²                                                                                                                                   | 30 m <sup>2</sup>                                                                                                               |  |  |
| Original                                                   | Circuit wattage               | 7.8 kW                                                                                                                     | 0.8 kW                                                                                                                                  | 0.36 kW                                                                                                                         |  |  |
| <u>luminaires</u>                                          | 50% of above                  | 3.9 kW                                                                                                                     | 0.4 kW                                                                                                                                  | 0.18 kW                                                                                                                         |  |  |
| Circuit<br>replacemer<br>luminaires                        | wattage of<br>nt or replacing | 4 kW 0.2 kW 0.3 kW                                                                                                         |                                                                                                                                         | 0.3 kW                                                                                                                          |  |  |
|                                                            | <u>sub item (a)(i)</u>        | Condition fulfilled, total circuit wattage of the works area of<br>the three places is 4.5 kW and exceeds 3 kW             |                                                                                                                                         |                                                                                                                                 |  |  |
|                                                            |                               | LPD requirements in BEC clause 5.4                                                                                         |                                                                                                                                         |                                                                                                                                 |  |  |
| <u>Checking</u><br>of<br>Condition<br>for<br>applicability | TABLE A                       | 4 kW is greater<br>than 50% of<br>original luminaires<br>circuit wattage i.e.<br>3.9 kW, hence<br>Place one is<br>governed | 0.2 kW is not<br>greater than 50%<br>of original<br>luminaires circuit<br>wattage i.e. 0.4<br>kW, hence Place<br>two is not<br>governed | 0.3 kW is greater<br>than 50% of<br>original luminaires<br>circuit wattage i.e.<br>0.18 kW, hence<br>Place three is<br>governed |  |  |
|                                                            |                               | Lighting control requirements in BEC clause 5.5                                                                            |                                                                                                                                         |                                                                                                                                 |  |  |
|                                                            |                               | Work does not<br>involve a complete<br>rewiring, hence<br>the lighting control<br>is not governed                          |                                                                                                                                         | Control requirement<br>not applicable to<br>"corridor"                                                                          |  |  |

# **TG – Major Retrofitting Works**

![](_page_46_Picture_1.jpeg)

#### Same series of works

#### Table 10.1.7 (d) : Retrofitting Works Case III

- Floor area covered by any works commenced within the 12-month period should be counted towards the "500 m<sup>2</sup>"
- Works under the same series but not commenced within the 12-month period should also comply with the MRW requirements

| <u>Place</u> | Working<br>period                         | <u>Works</u><br>internal<br>floor area | Remarks on same series of works in a 12-month period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>Form of</u><br><u>Compliance</u><br>(FOC) |  |  |
|--------------|-------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|
| A            | 1 Jan –<br>31 Mar<br>2013                 | 100 m <sup>2</sup>                     | The earliest date of the corresponding places'<br>working period commencement dates should not<br>always be taken as the start of the 500 m <sup>2</sup> counting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | The works in<br>all places A<br>to D should  |  |  |
| В            | 1 May –<br>31 Jul<br>2013                 | 150 m <sup>2</sup>                     | period (max 12-month) in the counting of the<br>aggregate floor area towards the 500 m <sup>2</sup> criterion.<br>In Case III here, the working period commencement<br>date of 1 May 2013 of place B should be taken as the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | be covered<br>by one FOC.                    |  |  |
| С            | 15 Dec<br>2013 <b>–</b><br>31 Jan<br>2014 | 200 m <sup>2</sup>                     | start date, as the aggregate of place B and those<br>places with works that follow more readily add up to<br>over 500 m <sup>2</sup> (150m <sup>2</sup> (B) + 200m <sup>2</sup> (C) + 200m <sup>2</sup> (D) =<br>550 m <sup>2</sup> ). BEC Table 10.1 item (a) governs these                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                              |  |  |
| D            | 1 Feb –<br>31 Mar<br>2014                 | 200 m <sup>2</sup>                     | places. (Here the 500 m <sup>2</sup> counting period starts on 1<br>May 2013 and ends on 31 Mar 2014.)<br>Reverting to place A, as it together with places B to D<br>form the series of work, BEC Table 10.1 item (a) also<br>governs works in place A.<br><u>Good Practice</u><br>It may be that when the series of works starts (i.e. as<br>at 1 Jan 2013), the works areas of places B to D are<br>yet to be confirmed. Under the situation it is better to<br>have the relevant building services installation in<br>place A to comply with the relevant requirements in<br>BEC Table 10.1 item (a), to avoid the possible non-<br>compliance that can only be known upon<br>confirmation of the works areas. |                                              |  |  |
|              | - F                                       | 4                                      | 7 機雷工程署                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EMSI                                         |  |  |

![](_page_47_Picture_0.jpeg)

機電工程署 🕺 EMSD

# Thank You

# Energy Efficiency Office 能源效益事務處

### Enquiry : 3757 6156

Email : mbec@emsd.gov.hk

Address : 3 Kai Shing Street, Kowloon Website : http://www.beeo.emsd.gov.hk/