Safety Knows No Borders: Submarine Gas Pipeline from PRC to BPPS

25 Jan 2011
Contents

- Introduction
- PetroChina’s Second West-East Pipeline Project
- Project Background
- Dachan – BPPS Submarine Pipeline
 - Pipeline Design
 - Construction
 - Operation
- Conclusion
Introduction

- More natural gas as fuel to meet emission standards
- Current gas supplies forecast to start depletion in 2012/13 – require gas replacement
- Memorandum of Understanding on Energy Co-operation signed in 2008
- CAPCO, a joint venture between ExxonMobil and CLP Power, is working with PetroChina to jointly develop a submarine gas pipeline linking Dachan Island to BPPS
- Safety management is key
PetroChina’s Second West-East Pipeline Project

- China’s first major energy project to transfer natural gas from outside
- From Khorgos Port (Xinjiang) to Guangzhou/Shenzhen and Shanghai

- Total length: ~8,600 km
- Capacity: ~30 Bcm/yr
- Maximum design pressure: 120 bar
- Fully operational in 2012
Pipeline Project Background

Battery Limits of JV Project

Onshore Pipeline

Dachan Island Launching Station
- Pig Launcher

(800m)

Submarine Pipeline

Shenzhen Waters (~15km)

HK Waters (~5km)

Hong Kong End Station
- Pig Receiver
- Gas Filters
- Gas Metering
Submarine Pipeline Route Selection

- Physical constraints considered:
 - Anchorage areas
 - Marine dredging / disposal areas
 - Submarine utilities
 - Marine vessel fairways
 - Reclamation areas

- Risk constraints considered:
 - Populated areas
 - Areas with risk related activities

- Optimum pipeline route concluded with:
 - Collaborative effort between PetroChina & CAPCO
 - Reviews with PRC and HKSAR authorities
Dachan – BPPS Submarine Pipeline Route

Anchorage

Anchorage

New Anchorage for non-powered ship

PetroChina Gas Station

SheKou

Dachan Island

DG Anchorage

Tanker Anchorage

Cargo Anchorage

Proposed Pipeline Route of approx. 20km

Existing Y13 Pipeline

Hong Kong Boundary

BPPS

Hong Kong

P.7
Submarine Pipeline Design

<table>
<thead>
<tr>
<th>Pipeline Design Parameters</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe Diameter</td>
<td>32 inch</td>
</tr>
<tr>
<td>Pipe Wall Thickness</td>
<td>22.2 mm</td>
</tr>
<tr>
<td>Design Operating Pressure</td>
<td>63 barg</td>
</tr>
<tr>
<td>External Corrosion Coating</td>
<td>3-Layer Polyethylene</td>
</tr>
<tr>
<td>Internal Coating</td>
<td>Epoxy</td>
</tr>
<tr>
<td>Concrete Weight Coating</td>
<td>60 – 80 mm</td>
</tr>
</tbody>
</table>

- Adopted European standard, DNV code for Submarine Pipeline Systems
Submarine Pipeline Design

- Factors considered in the design:
 - Input from regulatory authorities
 - Bathymetry and soils information from route survey
 - Interfaces with other sea users
 - Mechanical protection of pipeline
 - Gas supply from PRC sources
 - Gas demand conditions for BPPS
Mechanical Protection against Anchor

- Pipeline route traverses shipping channels
- Protection configuration determined through:
 - Risk-based probability study
 - DNV-RP-F107 – Risk Assessment of Pipeline Protection
- Protection design performances established from:
 - Mechanical study
 - Finite element (FE) analysis
 - Anchor drag centrifuge tests
Mechanical Protection against Anchor

- 3-D non-linear FE analysis with ABAQUS
 - Incorporates complex interactions between anchor, chain, soil, rock and pipeline
- Rock protection of 2 m and 3 m cover for protection from 5-tonne and 19-tonne anchors

Finite Element Analysis with ABAQUS

Protection Design for 19-tonne Anchor
Quantitative Risk Assessment (QRA)

- To assess potential risks associated with pipeline operation
- Resulting risk levels compared against HK Risk Guidelines
- QRA considered loss of containment due to all possible events
- Major risk contributors:
 - Corrosion
 - Material defects
 - Third party damage from ship anchor drops/drags
Quantitative Risk Assessment (QRA)

Pipeline Sections for QRA
- KP0–0.73: Type 2
- KP0.73–2.52: Type 3
- KP2.52–4.78: Type 2
- KP4.78–4.89: Type 1

QRA conclusion: Risks for all pipeline sections in HK water acceptable per HK EIAO
Safe Operation Design

- Safety overpressure systems at Dachan and BPPS
- Overpressure protection at BPPS with High Integrity Pressure Protection Systems
- In case of emergency:
 - New GRS isolation by ESD valves
 - Provisions provided in GRS facilities for automatic blowdown
 - Provision made for depressurisation of submarine pipeline by manual blowdown through vent stack at Dachan
Construction Safety

- Joint constructability workshops between CAPCO and PetroChina
- Risks at critical locations reviewed and appropriate mitigation methods incorporated into construction plan
- Marine Traffic Management Plan developed with local authorities requirements

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>700</td>
<td>2-way traffic navigation east of Dredger</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>600</td>
<td>2-way traffic navigation east of Dredger</td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>500</td>
<td>1-way navigation East of Dredger at either from north or south bound</td>
</tr>
<tr>
<td>300</td>
<td></td>
<td>400</td>
<td>1-way navigation and traffic separation recommended</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>300</td>
<td>1-way navigation and traffic separation recommended</td>
</tr>
<tr>
<td>500</td>
<td></td>
<td>200</td>
<td>1-way navigation West of Dredger at either from north or south bound</td>
</tr>
<tr>
<td>600</td>
<td></td>
<td>100</td>
<td>2-way traffic navigation east of Dredger</td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>0</td>
<td>2-way traffic navigation east of Dredger</td>
</tr>
</tbody>
</table>

Proposed Dredging Plan for Urmston Road and Safety Mitigations
Construction Safety - Pipeline Installation

- Marine Traffic Impact Assessment
 - Assessed potential impacts to marine traffic and facilities
 - Developed mitigation measures
- Geophysical survey to further confirm Y13-1 pipeline location before construction
- Environmental constraints addressed during construction planning stage

![Diagram of Conventional S-Lay Pipelaying Method](image)
Construction Safety – Shore Approach

- Ensure no over-stressing of pipeline during installation
- Stress checks to determine pipeline burial transitions and vertical radius
- Typical shore pull operation

Illustration of Shore Pull Operation
Operation Safety

- Operational Safety Management System critical
- Regular external and internal inspection to assure pipeline protection and integrity
- Develop Pipeline Emergency Procedure
- Consult key stakeholders to integrate with in emergency response procedures
Conclusion

- Close management and interfaces are essential
- Contracting strategy developed to secure effective management and rapid communication
- Ensure effective safety management process integrated and implemented through pipeline’s life-cycle
- Safety truly does not have a border!